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SECTION I

INTRODUCTION

In the last two decades there has been remarkable technical progress

in the fields of electronics, in general, and data processing, in particular.

In the same period, the new area of computational fluid dynamics, a branch

of numerical analysis, has experienced a growth comparible to that of com-

puter technology. Among the many applications of computational fluid

dynamics, the numerical solution of the Navier-Stokes equations has chal-

lenged a large number of engineers and scientists, due to the capability of

these partial differential equations of correctly modeling most of the very

interesting phenomena associated with fluid viscosity and compressibility

(e.g. shocks, shock-boundary-layer interaction, separation, stall, etc.).

The present work is concerned with the problem of low speed viscous

flow past an arbitrary two-dimensional body, for which all compressibility

effects are negligible. Even for the case of the incompressible Navier-

Stokes equations, the number of numerical techniques and their applications,

available in the technical literature, is so high that no systematic survey

will be provided here. For the present purpose, only a few typical examples

will be mentioned: the pioneering work of Burggraf concerning the now

classical driven cavity problem; the studies of Davis and his co-workers 2 4

for laminar flow past several semi-infinite bodies at moderate to high

values of the Reynolds number; the analysis of Mehta and Lavan5 about the

starting vortex, separation and stall of a lifting airfoil. However, most

2-5
AS numerical techniques are limited to particular geometries, for which a

coordinate transformation, mapping the body surface into a coordinate

wline, or equivalently the potential flow solution could be obtained



analytically. Two approaches appear at present very promising for removing

such a difficulty and providing viscous flow solutions about arbitrary con-

figurations: The Finite Element Method and the numerical generation of

body oriented coordinates. In particular, Thompson et al6- 10 have developed

and improved, throughout the years, a numerical technique for solving the

time dependent Navier-Stokes equations past one or more arbitrary two

dimensional bodies: First, they generate an appropriate body-fitted coor-

dinate system which maps the flow domain of arbitrary shape in the physical

plane into a rectangle in the transformed plane. Second, they solve the

unsteady Navier-Stokes equations in the transformed plane (coordinates)

by means of an implicit time marching numerical technique. A point SOR

(Successive Over Relaxation) iterative procedure is used at each new time

level in order to solve for the nonlinear terms and the elliptic part of

the equations, explicitly. This approach has been shown to be applicable
to both the vorticity-stream function8 and pressure velocity 9'1 0 formulations

of the time-dependent Navier-Stokes equations, for laminar as well as tur-

bulent flows. Further, it has been proved very reliable in modeling highly

10separated flows around stalled airfoils . However, its use for design

purposes is severely limited by its computational inefficiency. In part-

icular, when it is used to provide a steady-state flow solution by following

the asymptotic time decay of an unsteady flow phenomenon, the intrinsic

inefficiency of point iterative methods compounds to that of time dependent

approaches.

The aim of the present research is to develop an efficient numerical

procedure for solving the steady-state Navier-Stokes equations past an

arbitrary two dimensional body, by combining the transformation of Thompson

et al6 ,7 with a numerical technique more efficient than the point SOR method.

2

!- ... ... .



Recently, many researchers have applied a number of ADI (Alternating

Direction Implicit) techniques to the numerical solution of the Navier-

2-4,15
Stokes Equations. In particular, Davis and his co-workers , Briley

and McDonaldI1 - 13 and Beam and Warming14 have obtained considerable success

with such a technique. The two major advantages of the Linearized Block

Implicit methods1 3 (like the ADI) are the (quasi)linearization of the

governing equations, which eliminates any need of iterations at any time

level, and the presence of only block-tridiagonal matrices, whose direct

16
inversion is performed very efficiently by block Gaussian elimination

In the present study an ADI technique will be used to solve the vorticity-

stream function Navier-Stokes equations in the transformed plane after

mapping the flow field around an arbitrary airfoil into a rectangle by

6,7
means of the transformation of Thompson et al . Since only the steady

state solution is of present concern, the stream function equation is

parabolized by adding to it a relaxation-like time derivative, according to

2
Davis The vorticity equation is then (quasi)linearized and the two

(equations) are solved as a coupled set of finite difference equations

by means of the Douglas and Gunn1 7 ADI technique. The incremental approach

of Briley and McDonald12 also used by Beam and Warming1 4 and by Davis and

15Hill is used at the second sweep of the ADI procedure, in order to min-

imize computer storage.

6,7
The coordinate transformation6

, employed here, introduces a cut in

the physical plane, which is mapped into the two vertical sides of the

integration rectangle in the transformed plane. Therefore, the additional

difficulty of periodic boundary conditions in the horizontal direction had
18

to be dealt with. To this end, the method of Ahlberg et al. for inverting

a tridiagonal periodic matrix has been generalized to the present case of

3



a two-by-two periodic block tridiagonal matrix. All the details of the

algorithm and the results of its application to a simple model problem

are given in the Appendix.

The present numerical technique has been applied to three problems.

First, a simple Poiseuille flow has been computed in order to verify the

second order accuracy of the method versus an exact analytical solution.

1Second, the classical driven cavity problem has also been solved to

further verify the proposed algorithm in the case of a truly two-dimensional

flow problem. Finally, the flow past a NACA 0012 airfoil has been computed

to demonstrate the capability of simulating the viscous steady flow past

an arbitrary two-dimensional body.

4



SECTION II

GOVERNING EQUATIONS AND COORDINATE TRANSFORMATION

The governing equations are the nondimensional vorticity stream function

Navier-Stokes Equations, with a relaxation-like time derivative, -  added
2t

to the stream function equation 2 in order to parabolize it:

tw+ y wx x Wy = 1/Re(w xx + wyy)

and xx + yy +W=*- (2)

Equations (1) and (2) constitute a set of parabolic (in time) partial dif-

ferential equations which can be solved numerically by means of a time marching

ADI procedure. However, it is important to realize that, since equations (1)

and (2) are not the unsteady Navier-Stokes equations, a correct description

of the transient is not provided and only the converged solution will have

physical meaning.

In order to solve equations (1) and (2) for flow past an arbitrary two-

dimensional body (e.g. an airfoil), the transformation of Thompson et al.
6'7

is used to generate numerically a system of body oriented coordinates. With

this transformation '
7 the flow field in the physical plane, comprised between

a circle of radius equal to ten (chord lengths) and the airfoil, is mapped

into a rectangle in the transformed (&, n) plane. The airfoil and the circle

are mapped into the lower and upper sides of the integration rectangle

respectively and the two sides of an arbitrary cut, connecting the trailing

edge of the airfoil to the outer circle, are mapped into the two vertical

sides of the rectangle. In this way, the two vertical boundaries in the

transformed plane correspond to the same physical line and, therefore, periodic

5



boundary conditions in the horizontal (C) direction are required. The

transformation is provided by a set of two elliptic partial differential

equations which are discretized and solved numerically by means of a point

SOR method6 '7 . The step sizes in the transformed plane (F, n) are

arbitrary, since they cancel out in the coordinate transformation finite
S 6,7

difference equations, and are both taken equal to one, for convenience6.

Further details are given in References 6 thru 10. The transformation of

Thompson et al. '
7 has been used satisfactorily in several numerical solu-

tions of viscous and potential flows in regions containing any number of

arbitrary two-dimensional bodies8 - 10 and can be extended to three-dimensional

configurations. Its two major limitations are due to the approximation intro-

duced by imposing the free-stream boundary conditions at a finite distance

from the body and to its inability of removing exactly sharp edge singu-

larities. Whereas the boundary condition approximations are considered suf-

ficient for the present study, the second limitation has been removed by

considering an airfoil with a rounded trailing edge.

In the transformed coordinates the governing equations (1) and (2)

become:

W + ( W 0 /j - ( 2S + y + w
t ni (J J2 w, J2 ry J 2 1

+ W )/Re = 0 (3)

and

j _2_ + _.9 +f n 2 (4)
j2 U$ j 2 & n j2 Tq T1 J n 2 T1 J 5 2 at (4

where J, 1, 6, Y, 0, T are the Jacobian and the scale factors of the coor-

dinate transformation, see Reference 10 for their analytical expressions.

6



The no-slip and zero injection boundary conditions at the surface of

8
the airfoil are given in the transformed plane as:

(E, 0) =0 (5)

( , 0) =0 (6)

The free stream conditions, imposed on the circle enclosing the computational

flow field, are:

W(, M  = 0 (7)

' PM = Yc coss - xc sine (8)

where e is the angle of attack of the free-stream flow, and Xc, yc are the

physical coordinates of the circle corresponding to C and nM in the trans-

formed plane, nM being the height of the integration rectangle, equal to the

number of gridpoints (in the n direction) minus one.

Finally, the coordinate transformation introduces the following addi-

tional (nonphysical) periodic boundary conditions:

(M9 n) = (0, n) (9)

and (EM' n) = W(0, ) (10)

where M is the width of the integration domain, equal to the number of

gridpoints (in the E direction) minus one. As previously mentioned,

boundary conditions (9) and (10) produce periodic two-by-two block tri-

diagonal systems in the second sweep of the ADI solution procedure. Such

a difficulty has been resolved in the present study, where the Algorithm

of Ahlberg et al.18 for solving periodic tridiagonal system has been

generalized to the use of periodic systems of two coupled tridiagonal equa-

tions (see the Appendix).

7
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SECTION III

NUMERICAL METHOD

Equations (3) and (4) are expressed in finite difference form and solved

numerically by means of the Douglas and Gunn 18 ADI procedure as follows:

First, the nonlinear convective terms in the vorticity equation are (quasi)-

linearized and the time derivative are replaced by finite differences to give:

n+l n)/At + (,n+l W n + n n+l n W n)
n n nEl

_0 n+l Wn + n W )/ nW j (a n+l _ 2a n

+ Wn+l + a W n + TW n~ /Re -0 (11)+Ln nwrlww

and
a ~l 2 n+ Yn+1 n+l + n+l +Wn+1 -(,,n+ln/,t (2

where the J 2 dividing a, B, y, a and T has been omitted for convenience.

Note that in equations (11) and (12) all the linear terms are expressed at

the new time level tn+ l . tn + At implicitly except for the mixed derivatives

which are expressed (explicitly) at the old time level t, see References

14 and 15. Alternatively, equations (3) and (4) can be linearized in time

according to a Crank-Nicolson averaging to give:

(n+l - 0 )/,t +,n+l Wn + n Wn+l )/j n+l Wn +n Wn+l )2

W n+l + Wn 26 n + 2(n+l + W n

-2- & n 2 nn nn

+ 1 (nn+l + n + n+l 0
2 i + jt+ + )]

8
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and

21n l nn ,~ nr a (g~ l + j,)
T" Kc. + *EE )  20 Crn  2 nn + Yn) +7 (

) +1 n

T n+l n) + W n+l + n n+l n
+2 At (14)

which, except for the explicit mixed derivatives, are second order accurate

in time. The two step ADI procedure of Douglas and Gunn 1 7 is then applied

to equations (11) and (12) (or equivalently to equations (13) and (14)).

In the first sweep, the solution (indicated by a *) is advanced in time

by evaluating implicitly only the n derivatives and the source term (w n+l)

in the stream function equation, and evaluating all the other terms at the

old time level tn . Equations (11) and (12) thus become:
n Wn

-C__ + _ _ + *At J e )W Tn Re W ) ) T

n
- + (arn - 2 6Wn + "'En)/Re (15)

and

• + 0 + + "Ln _ i_ l 2(6At = -n (16)

Equation (15) and (16), after that all the derivatives are replaced with

(second-order-accurate) central finite differences give a coupled set of N

linear tridiagonal equations of the type:

alj W + bl] + clj WJ+l + dlj i j-I + el i i + flj J+l - hl. (17)

and , , , *(1
a2 Wj_ 1 + b2 Wj + c2 WJ+ I + d2 J-i + e2 i + f2 jj+l = h2 (18)

In equations (17) and (18) the subscript i (indicating the longitudinal F[

location) has been dropped for convenience, j varies from 2 to J-1 and all

the coefficients are known and can be obtained straightforwardly from

9



equations (15) and (16). At all locations (i) equations (17) and (18) are

solved very efficiently by Gauss block-tridiagonal reduction1 6 thus pro-

viding all the wi' j and *iJ values (i - 1,...I and J - 1,...J). Details

of the boundary conditions will be provided later. In the second sweep

n+l n+lof the ADI procedure, the final (*n , W ) solution is obtained by

n+l
evaluating the E derivative and the source term W (in equations 11 and

12) implicitly and the q derivatives explicitly from the first sweep *

solution, that is:

n+l ,n Wn
+ ( T n+l a n+l T) n+l

7 Jt Re -- 

n n
- * _ n* n n * *= (n- ) +  (Wn -j ()  +  OW

and- 
26 Wn )/Re 

(19)

n+l n+l + n+l n+l

12According to Briley and McDonald , equations (19) and (20) are replaced

by the following ones obtained by subtracting equation (15) from (19) and

(16) from (20), that is:

- n n n

At n R w w (21)

and

• n

At At

10
__ _ __ _ _. . ..___ _ __* •



where the new variables

- n+l n
w = w - W (23)

and .n+l - n (24)

have been introduced for convenience.

Equations (21) and (22), after that all the derivatives are replaced

by central finite differences, become a set of coupled linear trletagonal

equations of the type

ali Wi- + bli Wi +cli Wi+l + dl 10-i + eli *i + fli wi+l o hli (25)

and
a2i Wi-i + b2i Wi + c2i Wi+l + d2i i-i + e2i *i + f2 i i+l - h2i' (26)

where the subscript j is now dropped for convenience and all the ali thru

h2i coefficients are known. Equations (25) and (26) constitute, for

i = 1,.. .I, a system of 21 coupled tridiagonal equations subject to

periodic boundary conditions, so that for i = 1, wi-i and @i- are replaced

by w I and I and for i = I, wi+l and *i+l are replaced by w1 and

This system is solved very efficiently by means of the algorithm presented

in the Appendix for all rows, i.e., for j = 2,...J - i. It is worth noting
* *

that the Wi'j and iJ values appearing in the coefficients hlj and h2j are

not needed for the evaluation of Wij and *ij in any successive row.

Therefore, the same arrays are used to store wj and wiJ and and

The solution at the new tn+ l time can now be evaluated as:

n+l wn - (27a)i'j =  i'j + Wi'j(2a

and

n+l n + (27b)

id iJ + ij(2



for i -l,...I and j- 2,...J - and as

n+l (28a)
ij Wi~
i,j = i,j(2a

and
n+l (28b)

'ji,j *iJ

for i = 1,...I and j - 1 or j - J.

The whole process is then repeated until convergence.

A. Boundary Conditions for the * Solution

In the first sweep of the numerical procedure equations (17) and (18)

have to be solved at every longitudinal location, subject to boundary con-

ditions (5-8).

Equations (5), (7) and (8) are immediately imposed as

0 (29)

j- 0 (30)

Wij =0 (31)

Equation (6) can be satisfied in several different ways. The following

five approaches were used in the present study. Three, four and five-point

one-sided finite difference representations of equation (6) give respectively

(the step size is equal to one and is eliminated due to equation (29)):

3 . (32)

3 2

4 = .(93 18 2)/2 (33)

4 3 2)1

5 . 14 - 1203 + 16 2 (34)
53 4 3 2

12
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For the case of Cartesian coordinates (n y9 y E 1, a E 0) a linear shear

19
flow was also assumed near the body surface which gives the following

equation:

i + 2 3*2 "0 (35)
1 T 2 2 2

Finally, a central finite difference for iP was used, consistently with

the overall numerical procedure, i.e.,

2- O - 0 (36)

However, the value of %0 interior to the body was not available and had

to be evaluated somehow. To this purpose the steady state stream function

equation along the n = 0 (j = 1) line, where all the derivatives vanish

identically, is easily seen to provide

'Sp + = 0, (37)

which, in finite difference form, becomes

Yl(02- 2p1 + *) + Wi = 0 (38)

This, combined with equations (29) and (36) finally gives

2y1 *2 + w1 - 0 (39)

where y1 is evaluated by a three-point extrapolation from y2 ' Y3 and Y4 "

Any of equations (32) thru (35) or (39) is easily satisfied in the block

tridiagonal inversion of equations (17) and (18). Such an inversion is

similar to, and simpler than, that given in the Appendix. In particular,

it provides recursion relations of the type

j Rl = Rj.- + Slj j-i +Tl (40)

,p R2 WJ-1 + S2 j-I + T2j , (41)

13



where Ri thru T2 are given in terms of RIJ+ 1 thru T2J+ and can be easily

determined for j = J - 1, J - 2,...,2 since, from boundary conditions (30)

and (31):

Rlj ==Sl = Tlj = R2j = S2j = T2j = 0 (42)

Any of equations (32) thru (35) or (39), together with (40) and (41) easily

provides a relation for w in terms of known coefficients, and all w. and

can finally be evaluated by means of the recursion formulas (40) and (41).

14
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SECTION IV

RESULTS

The present numerical technique was applied to three different pro-

blems: a simple Poiseuille Flow, for which the second otder accuracy of

the method could be verified versus the exact analytical solution; the

driven cavity problem for which a fully two-dimensional solution could be

compared with available numerical results and finally flow past a NACA 0012

airfoil in order to assess the capability of the present method to achieve

its goal of computing arbitrary two-dimensional flow fields.

A. Poiseuille Flow

For laminar steady flow inside a two dimensional channel, at any loca-

tion x, the longitudinal velocity profile is parabolic and the normal velo-

city is zero everywhere. For convenience, the maximum velocity at the

center of the channel (y = h) was taken to be equal to h. The exact analy-

tical solutions for the vorticity and the stream function in the lower half

of the channel (0 < y < h) are therefore given as:

w = -2+ (43)

h

and 2 y (44)

3h

Two numerical solutions were obtained by using 5 gridpoints in the longitu-

dinal x (x H ) direction and 11 and 21 points in the normal y (y = n)

direction, so that h was equal to 10 and 20 respectively (Ay = i). The

one dimensional nature of the solution was captured perfectly thanks to the

periodic boundary conditions in the $ direction. The vorticity at the wall

was found to be equal to - 1.9900 and -1.9975 (for 11 and 21 gridpoints

respectively), when using the point image boundary condition of Burggraf1

15



equation (39), (yI  1, for this case) thus verifying the second order

accuracy of the method. The other four boundary conditions for y = =0

at the wall were also used and found totally satisfactory. Actually,

equations (33), (34) and (35) all replicated the exact (analytical) results.

It was mentioned that an "implicit" and a Crank Nicolson time splitting of

the governing equations could be used, see equations (11) thru (14); both

approaches have been implemented, found to be unconditionally stable for

this model problem and have produced, at convergence, identical results.

B. Driven Cavity Problem

The present algorithm was also applied to the classical square cavity

1
problem . For this case the boundary conditions are nonperiodic in both x

and y directions. The stream function i is prescribed to be zero on all

walls of the unit square flow field and the derivative of i in the direction

normal to the wall is equal to one on the top side of the square and to zero

on the remaining three sides. These homogeneous boundary conditions in the

x direction have been accommodated in the present incremental formulation

for T and w in the second sweep of the ADI procedure. The point image

approach of Burggraf has been used for these derivative boundary conditions

and was again found to be very satisfactory. Results were obtained with 30

step sizes in either x and y directions, for a value of the Reynolds Number

of 100. They are presented in figures 1 and 2 as the horizontal velocity

profile thru the gridpoint characterized by the maximum (absolute) value

of the stream function, and the contour plot of the stream function itself.

In figure 1 the results of Rubin et al. 20'22 obtained by means of a spline

approach using 28 by 28 meshes in each direction are shown for comparison.
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The agreement is satisfactory and provides further evidence of the correctness

of the present approach. No quantitative comparison is given in figure 2,

where the stream function contours correspond to values of -0.01, -0.015,

-0.020....-0.095 and agree reasonably well in values and shape with previously

1,22published results

C. Flow Past a NACA 0012 Airfoil

Flow past a NACA 0012 airfoil was finally considered in order to test

the present numerical technique in combination with the transformation of

6,7Thompson et al. 6
' In order to avoid the difficulties associated with a

sharp trailing edge, this has been smoothed by means of a circular arc,

see figures 3 and 4 which also provide the transformed coordinate lines in

the physical plane. The coordinate transformation, as used in the present

21
study, has been kindly provided by Captain H. A. Hegna who has optimized

the spacing of the (n = constant) coordinate lines near the body sur-

5face for turbulent flow at a value of the Reynolds number of about 105.

No attempt was made in the present study at optimizing the above mentioned

coordinate spacing for the present laminar flow calculations. Figure 3

clearly shows the outer boundary of the integration domain in the physical

plane, that is, a circle of center in the origin and radius equal to 10.

The body and the coordinate lines immediately around it are instead very

poorly resolved by the large scale of the computer plot. Figure 4 shows a

blow-up of the airfoil whose nondimensional chord length equals 1 and of

the coordinate lines immediately surrounding it. However, even such a

fairly large scale is not sufficient to clearly show the spacing of the

9 = constant coordinate lines immediately surrounding the airfoil.
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Solutions have been obtained for flow at zero angle of attack for

two values of the Reynolds number, namely Re 10 and Re = 10 . The

corresponding velocity vector plots are given in figures 5 and 6, respec-

tively. Figure 5 shows a typical attached viscous flow configuration

with a clearly visible boundary layer near the surface of the body. In

figure 6, the higher Reynolds number is clearly seen to produce a much

thinner boundary layer. A blow-up of the velocity distribution, very close

to the body surface, is given in figures 7 and 8 for the same two flow con-

figurations. These figures clearly show that despite a coordinate spacing

independent of the Reynolds number, the numerical solution has been able

to capture the shrinking of the boundary layer thickness with increasing

Reynolds number of the flow. It is obvious, however, that an optimization

of the coordinate spacing is warranted in order to obtain highly accurate

solutions at Reynolds number values of 104 or higher. A Re = 102 flow at

an angle of attack of 0.1 has also been computed and the results are given

in figure 9 again as velocity vectors. Separated flows were not attempted

due to the fact that all convective terms in the governing equations are

represented by central finite differences. However, first order accurate

windward finite difference representations for such terms can be easily

accommodated in the present algorithm. The present approach is computa-

tionally very fast insofar as the solution proceeds thru 100 time steps

within about 2 CPU minutes of CDC Cyber 175 for the present calculations

employing a grid of 70 by 44 points. The method of Thompson et al
8

requires a comparable amount of computer time for advancing the solution

of a single time step. However, the convergence rate was found to be lower

than anticipated: whereas, for the driven cavity problem 150 time steps

18



(At = .1) were sufficient for a satisfactory convergence ([(w n+l - W)

/ naverage < 10-5), for the flow past the NACA 0012 airfoil the relative

error in the solution was still of the order of 10- 4 , after 200 time cycles.

Further, in order to obtain convergence, the solution had to be started

with a very small step size (At = 10 ), which was then increased at every

-2
iteration by a factor of 1.1, until a value of 10 was reached, and was

then kept constant at that value, in order to avoid divergence. All results

have been obtained with the backward-in-time approach. The program using a

Crank Nicolson averaging was not found to converge for comparable 
values of

the time step.
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SECTION V

CONCLUSIONS AND RECOMMENDATIONS

An algorithm for solving the vorticity-stream function Navier-Stokes

equations for steady laminar flow past an arbitrary airfoil has been

developed. The governing equations are written in a system of body oriented

coordinates 6 '7 and solved by means of the ADI procedure of Douglas and

17Gunn . The present approach has computed the flow field past a NACA 0012

airfoil successfully, and has shown to be cost-competitive with other

approaches available in the technical literature. Further, it could be

easily modified to extend its capability to unsteady flow computations by

relaxing the stream function equation at every time step by any suitable

numerical technique (line SOR, ADI, Direct solvers). However, the present

approach needs improvements with respect to the convergence rate and the

present inability to compute separated flows. In this respect, the effect

of windward differencing and variable time steps4 ,13 is certainly worth

investigating. Finally, it is the author's belief that further, dramatic

improvements could be obtained by incorporating the very promising multi-

23
grid idea of Brandt
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AN ALGRITHMFOR THE SOLUTION OF PERIODIC SYSTEMS OF
TWO COUPLED TRIDIAGONAL EQUATIONS

Algori18

The peetAppendix generalizes the algorithm of Ahlberg et al. 1

for solving tridiagonal periodic systems, to the case of two-by-two block

The ostgenraltridiagonal system for 21 coupled equations in 21

unknowns k. F, i = 1, 2 . . . I, with periodic boundary conditions is

given as:

al 1 k I + bl1 k I + cl1 k 2 + dl 1 F I +el 1 F1 + fl1 F2 =hl I (1a)

a2 k + b2 k + c2 k + d2 F + e2 F + f2 F = h2 (lb)1 1 1 1 1 2 1 1 1 1 1 2 1

al k i + bl.i k.i + cl k i + dl F i + el.i F.i + fl F i = hl.i (2a)

a2 k i + b2.i k.i + c2.i k.i~ + d2 F i + e2.i F.i + f2 F i = h2.i (2b)

al Ik I1+ bl Ik I+cl Ik 1+ dl IF I1+ el F I+ flIF =hlI(a

~1a2 Ik I + b2 Ik I+c2 Ik 1+ d2 IF I1+ e2 IF I+ f2IF=h2V(b

Let us assume the following recursion relations for the unknowns, k., F

k.i = rl.i k i + sl F i + tl + ul k I+ vl FI(a

F = r2 k i+ +s2 F i+ +t2 + u2 k I+ v2 F I(b
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Equations (4a) and (4b) are valid for any value of i. They can be used,

therefore, to eliminate k and F from equations (2a,b), which become:
1-1 i-1

blk +cl k + el F +flF + ml k + nFhl (aii i i+i i i i i+l iI ii

b2 k+ c2 k i++e2 F + f2 F +r-2 k+ n2 F=h21

with:

bi =l rl +dl r2 +l ,(6a)bi -a i rli-i + lI r i-i bi

cli = cl , (7a)

e l.= al Sl 1 1 + di s2 i1+ eli (8a)

fl = fl (9a-)

ML= al ul + dl. u2 (10a)

nli =al 1 i + dI v2. ,- (ha)

= hI.l al ti i-I - dl11 t2 1-1 (12a)

and:

b 2 = a2' ri + d2. r2.i- + b2. (6b)

1~. I~., ,(7b)

-e2. = a2. i-I + (12 s2 i + e2 , (8b)

f2 . -. , (9b)

m21 = a2 ul 11+ d2 u2 i (l0b)

n21 = a2 vli- + d2 1v21-, (lib)

h = h2 - a2 i ti i- d2 t2 i-1(12b)
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The ri thru ti coefficients can now be determined by multiplying equations

(5a) and (5b) by e2 i and el i respectively, subtracting them to eliminate F ijand solving for k1, to give:
rl~ = - eli c2i - e2 cl j)/(bl * e2i -b2 ie i~), (13a)

sli= - (e 2 -e fl )/'(bl 1 e2 b2e (14a)

ul i = (e i 2 - e21 i ml .)/(bl . e2 - b2 i e O' (15a)

vii = e n e2 1 nl 1 )/(bl 1 e2~ n2 b2 - l (16a)

ti = (e2. hl eli h2)/(bl e2 b2 el (17a)
1 i i e k.e,

The r2 thru t2 coefficients are similarly obtained by elminating k1 and

solving for F ito give:

r21 =(bl 1 c2 - b2 i cli)(lib e2 1 bl 1 ), (13b)

u2 . = (bl i m2,i - b2 1 ml )/(el i 2 1 - e2 i l ) (15b)

v21 = (b 2 -b2 l )/elb - e l(16b)

The rlI thru t2 coefficients are evaluated by means of equations (la,b) in

the same way and all the rl thru t2 ..1-.... ,I-1) can then be evaluated by

means kof equations (13a-17b). In order to evaluate the F i and k i unknowns

(i.e. to solve the original system of equations) let us now take:

ki=wu11 kI + wvl F I+ wtl1, (18a)

F, wu2 k I+ wv2 F I+ wt2, (18b)
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with the wulI thru wt2 coefficients obviously given as:

wul1 = wv2
1 = 1, wvl1 

= wtl I = wu2I = wt21 
= 0. (19a,b)

From equations (18a,b) and (4a,b) it is easy to verify that:

wul i = rli wuli+1 + sli wu2i+ I + uli, (20a)

wvli = rli wvli+1 + sli wv2i+I + vii, (21a)

wtli = rli wtli+ + sli wt2i I + tli, (22a)

wu2. = r2 wul + s2 wu2 + u2i, (20b)

2i i 1+1 1 i+l

wv2i = r2i wvli+I + s2i wv i+l 
+ v2i, (21b)

wt2 i = r2i wtli+1 + s2i wt2i+1 + t2 (22b)

Equations (20a-22b) together with "boundary conditions" (19a,b) allow the

evaluations of the wul. thru wt2 i coefficients (i = I-i, 1-Z,...,D. These

will finally provide the solution vectors fi' k, if FI and k can be some-

how determined. This is easily accomplished by eliminating the FI, k1,

F I-1, ki_1 unknowns in equations (3a,b) by means of the appropriate recursion

formulas (18a,b) and by solving the resulting system of 2 equations in 2

unknowns, kl, FI by means of the Kramer's rule.

Fortran Implementation

The listing of a Fortran subroutine implementing the present algorithm

is attached for convenience. Note that the possibility of using the same arrays

for the recusion coefficients uli, wuli . . . . t21, wt2, has been exploited.
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THE FOLLOWING SUOJOUTINE INJERTrS A C OUPLED SET OF TWO ** 00120
*TRIOIAI.ONAL EQA T IONS W I T PERI30 IC JOUNOARY Com3ITIONS. *'03013 0
T THE COE FF IC IEN4TS OF THE OIFFERE4CE EUUATIONS ARE Al THRU 03011.0

*HI AND A2 THRU H2. THE SLLUTIO4 VECTURS ARE RETUk4EO TO d 02015
*THE MAIN PROGRA4 1Y 'lEANS OF THE JECTORT HI AN) 42. **'U06160

COMMiON Al .180,1llo8tE 0,IOOs40,008

O0IMENSION RI(S,i1SI(tc19Ti(d0),UIAso1,l61 03020C
JNIzJENO-I 02
OENCI-..(8i(1)*EZ(1)-!'.1(1)#EiII)) 000230

R1l9)zOENO'1El l#C2)H(12-E2(l)HZl(l)) 030240

S211)=OENoM (0E.(I ,FZ(I 1-(1) '21))) 000300

Ul2C1) -OENOH1 (F.1( 1) *A2( 1) - E2t 1 A H1) )00

U2(l DENO 37 1 *A1(I-bill) =4(1))lo3

VZ(1)=UENON' (3ce.) 01CL -8l(l)-02(il 2333
DO 6 J=2,JML0034
SIN=Al(J)*R1(J-1).O1 (J)*R2(J-1I .81(4) 0&s

tINAI(J)4IJ-LCJ)(J)USZ(J-1)EIJ 003370
FIN=P1 (J) 0003ba

ANINAIJ)'V1(J-1)4D1(J)'V2UJ-1) 000400

CZN.CZ (J)A(U T~-)D)T(-) 0 4301I

E2N=12tJ)*StCJ-1I,02(J)*SZ(J-tiE2(JI 030440

FZNxF2 (U) 0204.50
AM2N=A2(J)-JI(J-i)GD2CJ)-U(J-11 0304.60
AN2N=AZ(J~I1J(J-l).02(J)42Z(J-1) .204.70
NZN-H2(J)-A2(J)IT1(J-1)-0Z(J)lT2(J-l) 0304.80
OENs1 ./ (BIN- E~42rJ 1* ElN) 030490
Ri EU)-OEN(E'C2N-EZ2'dCIN) 000500
S1(J) =DEN1,'2-2FN 020510
TI (J) -DEN- (E2N-tlN-E1'JH2N) 030520
UI(U) -DEN-IL'4EN-E ~N 010530
VI (J) .EN* (El'4'ANZN-NIAdlN) 020540

S2(J -- DEN* (81:1* FN-C2ZN-FN) 000560
T2 (J)--OEN- (02:4*HlN-R1N-HV0 07
UZIJI -ODEN-(i314AN-2N4AMI'4) 020580
V2(1J)z-OEN-(31 'JAN2N-32N-A4IN) 0 0590

6 CONTINUE 020600
UI (JENO)-l I * 3061
41tJlNO)-0. 020620
TI~ (JNO).0. 02630
UZIJENO) .0. 000640
V2 (JENO) .. 0230650
t2tJEI)0. 0206
00 7 .J.I,JmI 030671
K-JEt4O-J 020610

,f1(K)UI(KIR(K(IUI(K+l) +Si('C)*UZ(I(#1 030740

T1IK)'Tl(K)'R (K)-TI(K.1 'Sl((I T2 (('1) 0^.0710

V2(K-V(K)#-1Z(KI*Vl(Kfi) fS2Z~V2VK~iI 030730

7 CONTINUE 03050
N2JEND 030760

"24"1000770
ALFI.AI(N)*UIPI),01(N)CO ('IUil)I# (NI*U2('O*Fl(N)*U2(L) ciETSO?6
OE11.Al 1)*Vl( 0 *El ,C(N) I(% 'l ti) OWN) V21*41 *Fit%)*VZ( 1) 000790

ALF22AZ(N) Ul (41 .32(fil fr (N)-J 1) 402 (N) U2V41.F2 (H)*JZ( 11 co0810

GAMAZ.ZN-A2N'*Ti ()-Cl'(N) *TIII,-UZ(N)*rZ(l)-F2ZU4)'T2(1) oaceao
OEN1./I ALFI391 T2ALF 1*fE TIP 000840

MI(JEND) e2EP0( AMA11= TZ-GAMA' rET1) ioasSO
N2OJENu).OE#4' AMAZ'A..FI-SAMI'ALF2) 000860
00 a J.1I, J% 030870
ttl(J)3UI(J)'411JrN0) *I(J)H2(tJND)*T1(U) 000860
H2(JI.U2(J)'Hi IJEPiJI VZEU3N'(JENO)402(J) 0)80

a CONTINUE 000900
RET URN 02 0910
( NO 001920

36

THIS FAG1 ii 3i&I QUAITIf FUV4&QA.JL
ThuM ~ ~ ~ ~ r ~Xr~I L1JT J.)Q

-4ew-"



Numerical Application

The present algorithm has been applied to a Spline 420 numerical

solution of the following ordinary differential equation:

F"(x) + F(x) (i- 4v2 ) sin 2wx , (23)I
whose exact solution, F(x) = sin 2nx, is available for comparison. The

20
Spline 4 procedure , applied to the numerical integration of equation (23)

in the range 0 < x < 1 leads to a system of two coupled tridiagonal equations

(la-3b) with the following values of the coefficients:

ali = Cli = 1/12; bli f 5/6; dli = fli f 0; eli = 1;

hli = (1 - 412 ) sin 2n(i - l)h; (24a-e)

a2i = c2i = h 2/6; b2i = 2h 2/3; d2i = f2i - -1; e2i = 2; h2i = 0. (25a-e)

Fi and ki are the functional and second derivative Spline 420 values at

the nodal point x i[xi = (i-l)h] and h is the step size (h=1/1).

Numerical solutions have been obtained for four values of I and the cor-

I
responding average truncation errors E(E = E I F. - sin 21(i-l)hj)/I), are

J= 1 4
i=l

given in Table I. The errors are proportional to h , as they should be, thus

verifying the validity of the proposed algorithm. The solution corresponding

to I = 160 required only 114 ms of CDC Cyber 175 computer.

N 20 40 80 160

.17 • 10- 4  .11 • 10- 5  .69 • 10-7  .43 • 10-8

TABLE I

37
*U.S.Government Prtnting Office: 1980 - 657-084/768


